Are day and night equal at the equinox?

Equinox means “equal night.” And you might hear that day and night are equal at the equinoxes. Yet Earth’s atmosphere and our sun team up to give us more day than night at an equinox.

Four pictures of Earth. Line between light and dark slanted in left two, vertical in right two.

Equinoxes at right. Solstices at left. In each of the images, Earth’s rotational axis is perpendicular (straight up and down), with the North Pole at top and South Pole at bottom. Images via Geosync.

The upcoming equinox – the Northern Hemisphere’s autumn equinox and Southern Hemisphere’s spring equinox – falls at 13:31 UTC on Tuesday, September 22, 2020. For North American time zones, that’s September 22 at 9:31 a.m. EDT, 8:31 a.m. CDT, 7:31 a.m. MDT and 6:31 a.m. PDT. Twice a year – on the March and September equinoxes – everyone worldwide supposedly receives 12 hours of day and 12 hours of night. Generally speaking, that’s true. But, precisely speaking, there is more daylight than nighttime on the day of the equinox, an additional eight or so minutes of daylight at mid-temperate latitudes. There are two reasons why we have more than 12 hours of daylight on this day of supposedly equal day and night. They are:

1. The sun is a disk, not a point.

2. Atmospheric refraction.

Read more about the September 2020 equinox: All you need to know

Silhouette of a man seated on a beach, watching sunset over an ocean.

Contemplating the sunset on the Philippine island of Leyte. Photo by Abie Oquias Baybay.

1. The sun is a disk, not a point. Watch any sunset, and you know the sun appears in Earth’s sky as a disk.

It’s not pointlike, as stars are, and yet – by definition – most almanacs regard sunrise as when the leading edge of the sun first touches the eastern horizon. They define sunset as when the sun’s trailing edge finally touches the western horizon.

This in itself provides an extra 2 1/2 to 3 minutes of daylight at mid-temperate latitudes.

Diagram showing direction of refracted sun's position above horizon at sunset as opposed to sun's true position.

Atmospheric refraction raises the sun about 1/2 degree upward in our sky at both sunrise and sunset. This advances the time of actual sunrise, while delaying the time of actual sunset. The result is several minutes of extra daylight, not just at an equinox, but every day. Image via Wikipedia.

2. Atmospheric refraction. The Earth’s atmosphere acts like a lens or prism, uplifting the sun about 0.5 degrees from its true geometrical position whenever the sun nears the horizon. Coincidentally, the sun’s angular diameter spans about 0.5 degrees, as well.

In other words, when you see the sun on the horizon, it’s actually just below the horizon geometrically.

What does atmospheric refraction mean for the length of daylight? It advances the sunrise and delays the sunset, adding nearly another six minutes of daylight at mid-temperate latitudes. Hence, more daylight than night at the equinox.

Astronomical almanacs usually don’t give sunrise or sunset times to the second. That’s because atmospheric refraction varies somewhat, depending on air temperature, humidity and barometric pressure. Lower temperature, higher humidity and higher barometric pressure all increase atmospheric refraction.

On the day of the equinox, the center of the sun would set about 12 hours after rising – given a level horizon, as at sea, and no atmospheric refraction.

What is an equilux? Here’s a new word for you, equilux. The word is used to describe the day on which day and night are equal. The equilux happens a few to several days after the autumn equinox, and a few to several days before the spring equinox.

Much as earliest sunrises and latest sunsets vary with latitude, so the exact date of an equilux varies with latitude. That’s in contrast to the equinox itself, which is a whole-Earth event, happening at the same instant worldwide. At and near the equator, there is no equilux whatsoever, because the daylight period is over 12 hours long every day of the year.

Visit timeanddate.com for the approximate date of equal day and night at your latitude

Earth, with axis vertical and sun's rays hitting day side perpendicularly.

Illustrations like this one make it seem as if day and night should be equal at the equinox. In fact, they aren’t exactly equal.

Bottom line: There’s slightly more day than night on the day of an equinox. That’s because the sun is a disk, not a point of light, and because Earth’s atmosphere refracts (bends) sunlight.

Bruce McClure