Lutetia: Rare survivor from from birth of Earth

New observations indicate that the asteroid Lutetia is a leftover fragment of the same original material that formed the Earth, Venus and Mercury. Astronomers have combined data from ESA’s Rosetta spacecraft, ESO’s New Technology Telescope, and NASA telescopes. They found that the properties of the asteroid closely match those of a rare kind of meteorites found on Earth and thought to have formed in the inner parts of the solar system. Lutetia must, at some point, have moved out to its current location in the main asteroid belt between Mars and Jupiter.

Asteroid Lutetia. Image Credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

A team of astronomers from French and North American universities have studied the unusual asteroid Lutetia in detail at a very wide range of wavelengths to deduce its composition. Data from the OSIRIS camera on ESA’s Rosetta spacecraft, ESO’s New Technology Telescope (NTT) at the La Silla Observatory in Chile, and NASA’s Infrared Telescope Facility in Hawaii and Spitzer Space Telescope were combined to create the most complete spectrum of an asteroid ever assembled.

This spectrum of Lutetia was then compared with that of meteorites found on Earth that have been extensively studied in the laboratory. Only one type of meteorite — enstatite chondrites— was found to have properties that matched Lutetia over the full range of colors.

Artist’s concept of the development of the solar system over some 5 billion years. The top panel shows a debris disk around the sun. At the second stage, particles in the disk have formed large clumps, roughly 100 kilometers across and, similar to the asteroid Lutetia. These bodies in turn formed the rocky planets including the Earth, shown in the third panel down. Over the subsequent four billion years the surface of the Earth developed to what we know now. Image Credit: ESO/L. Calçada and N. Risinger

Enstatite chondrites are known to be material that dates from the early solar system. They are thought to have formed close to the young sun and to have been a major building block in the formation of the rocky planets, in particular the Earth, Venus and Mercury. Lutetia seems to have originated not in the main belt of asteroids, where it is now, but much closer to the sun. Pierre Vernazza (ESO), the lead author of the paper, wants to know:

How did Lutetia escape from the inner solar system and reach the main asteroid belt?

Astronomers have estimated that less than 2% of the bodies located in the region where Earth formed, ended up in the main asteroid belt. Most of the bodies of the inner solar system disappeared after a few million years as they were incorporated into the young planets that were forming. However, some of the largest, with diameters of about 100 kilometers (60 miles) or more, were ejected to safer orbits further from the sun.

Lutetia, which is about 100 kilometres across, might have been tossed out from the inner parts of the young solar system if it passed close to one of the rocky planets and thus had its orbit dramatically altered. An encounter with the young Jupiter during its migration to its current orbit could also account for the huge change in Lutetia’s orbit. Pierre Vernazza said:

We think that such an ejection must have happened to Lutetia. It ended up as an interloper in the main asteroid belt and it has been preserved there for four billion years.

Earlier studies of its color and surface properties showed that Lutetia is a very unusual and rather mysterious member of the asteroid main belt. Previous surveys have shown that similar asteroids are very rare and represent less than 1% of the asteroid population of the main belt. The new findings explain why Lutetia is different — it is a very rare survivor of the original material that formed the rocky planets. Vernazza said:

Lutetia seems to be the largest, and one of the very few, remnants of such material in the main asteroid belt. For this reason, asteroids like Lutetia represent ideal targets for future sample return missions. We could then study in detail the origin of the rocky planets, including our Earth.

Via the European Southern Observatory

November 13, 2011

Like what you read?
Subscribe and receive daily news delivered to your inbox.

Your email address will only be used for EarthSky content. Privacy Policy
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

More from 


View All