Loss of large predators has disrupted multiple ecosystems

Scientists say decimation of top predators may be humankind’s most pervasive influence on the natural world due to cascading effects on ecosystems.

The decline of large predators and other apex consumers at the top of the food chain has disrupted ecosystems all over the planet, according to a review of recent findings conducted by an international team of scientists and published in the July 15, 2011 issue of Science. The study looked at research on a wide range of terrestrial, freshwater, and marine ecosystems and concluded that “the loss of apex consumers is arguably humankind’s most pervasive influence on the natural world.”

A 130-pound wolf, newly fitted with a radio collar. Image Credit: U.S. Fish and Wildlife

According to first author James Estes, a professor of ecology and evolutionary biology at the University of California, Santa Cruz, large animals were once ubiquitous across the globe, and they shaped the structure and dynamics of ecosystems. Their decline, largely caused by humans through hunting and habitat fragmentation, has had far-reaching and often surprising consequences, including changes in vegetation, wildfire frequency, infectious diseases, invasive species, water quality, and nutrient cycles.

The decline of apex consumers has been most pronounced among the big predators, such as wolves and lions on land, whales and sharks in the oceans, and large fish in freshwater ecosystems. But there have also been dramatic declines in populations of many large herbivores, such as elephants and bison. The loss of apex consumers from an ecosystem triggers an ecological phenomenon known as a trophic cascade, a chain of effects moving down through lower levels of the food chain.

White shark. Image Credit: Terry Goss

Estes said:

The top-down effects of apex consumers in an ecosystem are fundamentally important, but it is a complicated phenomenon. They have diverse and powerful effects on the ways ecosystems work, and the loss of these large animals has widespread implications.

Estes and his coauthors cite a wide range of examples in their review, including these:

Wolves and elk. Image Credit: Doug Smith

  • The extirpation (local extinction) of wolves in Yellowstone National Park led to over-browsing of aspen and willows by elk, and restoration of wolves has allowed the vegetation to recover.
  • The reduction of lions and leopards in parts of Africa has led to population outbreaks and changes in behavior of olive baboons, increasing their contact with people and causing higher rates of intestinal parasites in both people and baboons.
  • A rinderpest epidemic (viral disease) decimated the populations of wildebeest and other ungulates in the Serengeti, resulting in more woody vegetation and increased extent and frequency of wildfires prior to rinderpest eradication in the 1960s.
  • Dramatic changes in coastal ecosystems have followed the collapse and recovery of sea otter populations; sea otters maintain coastal kelp forests by controlling populations of kelp-grazing sea urchins.
  • The decimation of sharks in an estuarine ecosystem caused an outbreak of cow-nosed rays and the collapse of shellfish populations.

Restoration of wolves to Yellowstone National Park has allowed vegetation to recover from over-browsing by elk (left photo taken in 1997, right in 2001). Image Credit: W. Ripple

Despite these and other well-known examples, the extent to which ecosystems are shaped by such interactions has not been widely appreciated. Estes said:

There’s been a tendency to see it as idiosyncratic and specific to particular species and ecosystems.

The reduction of lions and leopards in parts of Africa has led to population outbreaks and changes in behavior of olive baboons, increasing their contact with people and causing higher rates of intestinal parasites in both people and baboons. Image Credit: Haplochromis

One reason for this is that the top-down effects of apex predators are difficult to observe and study. Estes explained:

These interactions are invisible unless there is some perturbation that reveals them. With these large animals, it’s impossible to do the kinds of experiments that would be needed to show their effects, so the evidence has been acquired as a result of natural changes and long-term records.

An olive baboon. Image credit: Nevit Dilmen

Estes has been studying coastal ecosystems in the North Pacific for several decades, doing pioneering work on the ecological roles of sea otters and killer whales. In 2008, he and coauthor John Terborgh of Duke University organized a conference on trophic cascades which brought together scientists studying a wide range of ecosystems. The recognition that similar top-down effects have been observed in many different systems was a catalyst for the new paper.

The study’s findings have profound implications for conservation. Estes said:

To the extent that conservation aims toward restoring functional ecosystems, the reestablishment of large animals and their ecological effects is fundamental. This has huge implications for the scale at which conservation can be done. You can’t restore large apex consumers on an acre of land. These animals roam over large areas, so it’s going to require large-scale approaches.

The paper’s coauthors include 24 scientists from various institutions in six countries.

The predator of all apex predators stands in a field of recovered aspen. Image Credit: Oregon State University

Bottom line: James Estes, UC Santa Cruz, and a team of scientists from six countries have completed a review of apex predator loss and the resulting disruption on ecosystems worldwide. Results of their study appear in the July 15, 2011 issue of Science.

Via University of California Santa Cruz

Shark Conservation Act passed by U.S. lawmakers to protect sharks from fin trade

EarthSky