Enjoying EarthSky? Subscribe.

110,649 subscribers and counting ...

EarthSky // Science Wire, Space Release Date: Jun 09, 2014

Moon formed from Earth collision with planet-sized body: New evidence

The theory that the moon formed when a planet-sized body named Theia crashed into Earth is supported by new evidence using samples from Apollo missions.

planet-impact-NASA

View full size. This artist’s concept shows a celestial body about the size of our moon slamming at great speed into a body the size of Mercury. Image Credit: NASA/JPL-Caltech

A new series of measurements of oxygen isotopes provides increasing evidence that our moon formed from the collision of the Earth with another large, planet-sized astronomical body, around 4.5 billion years ago. This work was published in Science on June 6.

Most planetary scientists believe that the moon formed from an impact between the Earth and a planet-sized body, which has been given the name Theia. Efforts to confirm that the impact had taken place had centered on measuring the ratios between the isotopes of oxygen, titanium, silicon and others. These ratios are known to vary throughout the solar system, but their close similarity between Earth and moon conflicted with theoretical models of the collision that indicated that the Moon would form mostly from Theia, and thus would be expected to be compositionally different from the Earth.

Now a group of German researchers, led by Dr. Daniel Herwartz, have used more refined techniques to compare the ratios of 17O/16O in lunar samples, with those from Earth. The team initially used lunar samples which had arrived on Earth via meteorites, but as these samples had exchanged their isotopes with water from Earth, fresher samples were sought. These were provided by NASA from the Apollo 11, 12 and 16 missions; they were found to contain significantly higher levels of 17O/16O than their Earthly counterparts.

Dr. Herwartz said:

The differences are small and difficult to detect, but they are there. This means two things; firstly we can now be reasonably sure that the giant collision took place. Secondly, it gives us an idea of the geochemistry of Theia … If this is true, we can now predict the geochemical and isotopic composition of the moon, because the present moon is a mixture of Theia and the early Earth. The next goal is to find out how much material of Theia is in the moon.

Most models estimate that the moon is composed of around 70% to 90% material from Theia, with the remaining 10% to 30% coming from the early Earth. However, some models argue for as little as 8% Theia in the Moon. Dr Herwartz said that the new data indicate that a 50:50 mixture seems possible, but this needs to be confirmed.

Via EAG