Science WireSpace

The fast winds of Venus are getting faster

Venus is well known for its curious super-rotating atmosphere, which whips around the planet once every four Earth days. This is in stark contrast to the rotation of the planet itself – the length of the day – which takes a comparatively laborious 243 Earth days. Now ESA’s Venus Express has revealed that the winds on the planet Venus have steadily been getting faster over the last six years.

The spacecraft chronicled what ESA says is the “most detailed record of cloud motion” yet in the atmosphere of Venus in order to reach this conclusion.

Average wind speeds at low latitudes (between the equator and 50º north or south) have increased from roughly 300 km/h to 400 km/h over the first six years of the Venus Express mission. In this graph, the white line shows the data derived from manual cloud tracking, and the black line is from digital tracking methods.
Average wind speeds at low latitudes on Venus (between the equator and 50 degrees north or south) have increased from roughly 300 km/h to 400 km/h over the first six years of the Venus Express mission. In this graph, the white line shows the data derived from manual cloud tracking, and the black line is from digital tracking methods. Image via ESA.
Examples of cloud features identified in Venus Express images and used to monitor wind speeds. Long-term studies based on tracking the motions of several hundred thousand cloud features, indicated here with arrows and ovals, reveal that the average wind speeds on Venus have increased from roughly 300 km/h to 400 km/h over the first six years of the mission. Image via ESA.
Examples of cloud features identified in Venus Express images and used to monitor wind speeds. These long-term studies were based on tracking the motions of several hundred thousand cloud features, indicated here with arrows and ovals. Image via ESA.

By tracking the movements of distinct cloud features in the cloud tops some 70 kilometers (43 miles) above the planet’s surface over a period of 10 venusian years (6 Earth years), scientists have been able to monitor patterns in the long-term global wind speeds.

When Venus Express arrived at the planet in 2006, average cloud-top wind speeds between latitudes 50 degrees on either side of the equator were clocked at roughly 300 km/h. The results of two separate studies have revealed that these already remarkably rapid winds are becoming even faster, increasing to 400 km/h over the course of the mission.

“This is an enormous increase in the already high wind speeds known in the atmosphere. Such a large variation has never before been observed on Venus, and we do not yet understand why this occurred,” says Igor Khatuntsev from the Space Research Institute in Moscow and lead author of the Russian-led paper to be published in the journal Icarus.

Dr Khatuntsev’s team determined the wind speeds by measuring how cloud features in images moved between frames: over 45 000 features were painstakingly tracked by hand and more than 350 000 further features were tracked automatically using a computer programme.

In a complementary study, a Japanese-led team used their own automated cloud tracking method to derive the cloud motions: their results are to be published in the Journal of Geophysical Research.

On top of this long-term increase in the average wind speed, however, both studies have also revealed regular variations linked to the local time of day and the altitude of the sun above the horizon, and to the rotation period of Venus.

One regular oscillation occurs roughly every 4.8 days near the equator and is thought to be connected to atmospheric waves at lower altitudes.

But the research also unveiled some harder-to-explain curiosities.

“Our analysis of cloud motions at low latitudes in the southern hemisphere showed that over the six years of study the velocity of the winds changed by up 70 km/h over a time scale of 255 Earth days – slightly longer than a year on Venus,” says Toru Kouyama from the Information Technology Research Institute in Ibaraki, Japan.

Via ESA

Posted 
June 18, 2013
 in 
Science Wire

Like what you read?
Subscribe and receive daily news delivered to your inbox.

Your email address will only be used for EarthSky content. Privacy Policy
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

More from 

Deborah Byrd

View All